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FURTHER COMMENTS ON THE APPLICATION OF THE METHOD OF
AVERAGING TO THE STUDY OF THE ROTATIONAL MOTIONS OF A
TRIAXIAL RIGID BODY, PART 2

1. Introduction

In [A.R.,19711T we described some of the results which we
have obtained in applying the averaging technique described in
[F.R.,1971] to the variational equations which arise in treat-
ing the perturbations of the free rotational motions of a tri-
axial rigid body. In [A.R.,1971] we carried out the first step
of the averaging procedure and derived the averaged differential
equations for a set of canonical variables ({{k,/ﬁk)for the
problem of a triaxial body in a precessing, elliptic orbit
abput an attracting center. The development was carried out
to the point that the averaged differential equations [A.R.,
1971,(5.31) ] are in a form which can readily be integrated if
it is so desired. The second step of the averaging procedure
was not carried out for these canonical variables (0<k,/9k)
because we were plahning to use the averaging technique to
develop first-order secular solutions for an alternative set
of noncanonical variables. In [F.R.»1972] we began our dis-
cussion of the development of these secular solutions by carry-
ing out the first step of the avéraging procedure for a con-
venient set of noncanonical variables. In the present report;
we complete the second and final step in the development of

these first - order secular solutions.

References to our earlier reports of June 16, 1970,
February 19, 1971, August 2, 1971 and February 21, 1972 are
indicated by [J.R.,1971}, [F.R.»1971}, [A.R.,1971] and
[F.R.,1972], respectively.
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2. First-Order. Secular Solution

Equations (L;.el;)+ may be integrated nunieriéaiiy with a
micH 16nger integration Ste£ time than may be used with equations
(ﬁ.j)i In this way, we ¢an obtaln the first-order setular solu-

~ tiohs for fhe rotational hotion under the influence of the
gravity-gradient torque. We can also, hoWever; integrate the
averaged system (lL.2l) analytically with the aid of the inte-
gral‘(u.30). We address ourselves to this problém in the re-
mainder of this section.

.To begin with, we attempt to integrate (l.2l{b)), noting
that.asedfiis.oonstant. We first express ¢yﬁ (and hence syﬁ)
in terms of eH by substituting (b) and (e) of (L.25) into
(4.30). We find that, to first ofder,

, |
¢y, =~ _1(ctth e, -a't ¢, + C.) (2.1)
Ty T, 27T % BT oy b

' H

It follows from (2.1) that

1/2, L * 3 X * %
- % -c "
SV% = + gAs) ( ceH + A3 ceH + A ce + Ay ceH +A5) » (2.2)
S GH H

where

x .2 '

A = c"ah >

ublt

+ ETT equations designated (L.ij),i,J, nonnegative intégers,
refer to equations given in [F.R.,1972].
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If (2.2) is substituted into (L4.24(b))s we can write

8y o (VY2 gk, (2.3
iy &

52 x 1/2
s +A c AO)

H 1 8y

In order to integrate (2.3), we first note that the bi-
gquadratic equation

h ?('2 > R _ ‘
+ ABGGH + A2c +Ajeg +AS=0 (2.1

- ¢4
has the following allowable roots:
(1) four distinct real roots.

(ii) four real roots with two identical roots,
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(iii) two distinct real roots with a pair of complex roots,

(iv) two identical real roots.and a palr of complex roots.

In what follows, we consider each of the four cases.

Case (i): Four distinct real roots

In this case, we can write equation (2.3) in the Jacobian

normal form for real roots ([see (BF250.0L) and (BFZS0.0é)ﬁ

> de .
g du = Oy = ~(A*)]/Qaeé1 At ,
7z *
[(al—ceH)(aZ—ceH)(a3-ceH)(ceH-ah)] |
(2.5)
where
g = 2 ., (2.5) 1
1/2 _
[(a1~a3)(az—au)]

if 815 85 a3-and au are the real roots of the biquadratic

equation (L.l), and it is assumed that a1>a2>a3

>
variable o is related to u through the equation

H

. L%
2 *
cg = Ay Ay sn2u® o 0T k™
H A_ +A, sn2 (¥ :
377

>aL‘..

The

(2.6)

:F Reference to equations in H and Book of Elliptic Integrals

for Engineers and Physicists, Byrd,P.F. and Friedman, M.D.,
Springer,Berlin, 155l;, are prefixed by the notation BF,




> ,
Here K 1is defined by the integral

/2
* df

' . ., 1/2
0 (1-1%% sin”s )

where k*‘is the modulus of Jacobian elliptic functions and in-

tegrals. Explicit values of k*'and A 1=1,2,3,4 will be given

i!
in the study of the special cases which follows.

Since the time rate of change of Cq is real, the value of
' H

0 must either lie between al and 8, inclusive or between ag

H X

and ah inclusive. We will analyze (2.5) in the subcases which

c

follow.
(1) 81>Cg > 85, ¢+ The Ay, 1=1,2,3,4, have the values
H
Ay = a4(8,- au) » (a)
A2 = au(al~ 32) 5 (b)
(2.7)
A3 = a2- au s . (C)
Ah, = al— 32 f) (d)
X 2
and k has the wvalue
2 o (8- 8)lay - a)) (2.8)

(a1~ a3)(a2 - ah)



for this and the remaining three possiblities under Case (1i).
. %
If we integrate (2.5) with respect to u*'from O tou (i.e.>

integrating with respect to time t from t. to t), we find

1
[see (BF257.00)] that
1/2 A
u*=il_ (&) / s O-Q(t-tl), (2.9)
where t. is the value of t at which ¢ = &

1 ) 1
H
Substituting (2.9) into equation (2.6}, we obtain the
first-order secular solution for c

o

and thus the first-order
H .

secular solution for eH .

(2) a; 2 ¢y >a, 3 The A, i=1,2,3:ls have the values

A-l = 82(a3 - al) 9 (a)
Al = 8.3(8.1 - 3.2) » (b) (2.10)
Ay = a3 -8 > (e)
Au =8y - a5 . | . (d)

If we integrate (2.5) with respect to time from. t. to t, we

2
find [see(BF256,00) ] that
u?: . ;._% (a%) /2 Sgoil (tt5) (2.11)

where t, i1s the value of t at which ¢ = 8, .
2 GH 2



Substituting (2.11) into equation (2.6), we obtain the

first-order secular solution for Oy

(3) a; < ¢
S 3 %

i

=
1}
o
w
\
o
i~
-

< &), * The Ay i=1,2, 3,5y, have the values

(a)

(b).

(c)

(a)

(2.12)

If we integrate (2.5) with respect to time t from t3 to t,

we have [see (BF253.00)] that

% X1/2 g
e

u

where t. 1is the value of t at which ¢ = 8

(2.13)

Substituting (2.15) into equation (2.6), we obtain the

first-order secular solution for BH.

-~

(L) 8y < Co. < 8, ¢ The A;, i=1,2,35l, have the values
-

A = au(al - a3) s

(a

h=
1
™

2 =8 lag-g) o

=
=

H

w
W

'

o
=

(a)
(b)
(c)

(d)

(2.1h)



If we integrate (2.5) with respect to time t from t to t,
we find [see(BF252,00) ] that

w = ;_Q_G(A")l/2 5g0Lt (t-t) (2.15)
8

where t, 1s the value of t at which c = &) .
by oy L4

Substituting (2.15) into equation (2.6), we obtain the
first-order secular solution for‘eH.

The associated first-order secular solution for the var-
iable"ylH for each of the subcases»described above, is readily
obtained from (2.1). This eliminates the need to integrate
(4.24(a)) directly. Four more integrals of (.2]}) remain to
be determined. We consider next the variable 4DH. |

In order to integrate equation (l.2l(c)), we first re-

write it in the form

")02 - x,'" . (2.16)

6 and cg with respect
H H

We note that if we can integrate c¥,/s
, H
to time, to first-order, we can then obtain the solution for<¢H.

From relations (L.25(b)) and (k.30), it is found; to

first-order, that //
c b b h(c'! h:;- a'! h o - C)

YH= - Syo = - _yo =-__ 2T 7 pTT * . (2.17)
sg hse h —hce 2 2

H | H H h - th



If we introduce

the identities

L (_1

1 = + 1 ) s (8.)
hz-h2° 2h h+hzo h"h‘zo
Rgo =2 (_1 -_1), (b) (2.18)
!.’lg-l‘i‘eo i’i*-hzo hfh'zo
2.
z© = ( 1 + 1 )—1 ’ (C)
ha_h;o 2 h+hz° h-hzo
: . , , j
equation (2.17) takes the separated form
c D D
Ye="1 1 +D2 1 s, , (2.19)
se h E-ce h ‘:1+ce 3
H H H
where
D, = -1 (a'"h2 - b''h + c'') ,
1 3 :
D, = -1 (a''h? + b''h + c'") ,
D. =at'h .
3

We can express the right hand side of (2.19) in terms of

u*'if Wwe replace ¢

to replace t by u

through the use of (2.6). We use (2.5)

e

as the variable of integration. We then

obtain the differential form
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¥ ! E ‘ . = *
\VH dt = T g* [ Dl A3+Ah- sn‘u +
s ¥ 1/ 2 ¢ A 5 L%
SH (A7) se.:'Q h{ 3 Al) 1-y I sn2y
D, A +h, sn2 u*
+ 2 . fgth), snou g du (2.20)
h(A3+AlT 1_}2 onz g* 3
2
where - ‘
2
"X o= ALL - A2 » (a)
1 A3 -~ Al
(2.20)!
-y Za Ay v A  (b)
2 A, + Ay
3 1

Upon integrating (2.20) from t; to t, we find, from (BF336.01)
and (BF337.01); that

(]
I =‘[ VH gt = - g% Dy [a Ql(u*; 2) ~V_(0,x*
11 3 . L 3\Valugs y 77-Y,00:3
s (K(—)l/2890_n- h(A3 Al)

* o e |
D x 2 2
+ 2 [A3 (Vl(ui, 12) - Vl(O,D’ 2))

h(A3+A7)

¥ 2 2 X
- Ah<w1(ui, 32) - wl(o,-gzig - D3 ui:E
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where 1=1,2,3,L, and

¥ 2
TI(uysy j) (a)
(3:1,2) (2.22)

* 2 ¥ -
= [Il(ui, 7y -Fl] )] . ()

A

i

TR P
i

Here II(uZE‘in; §» & positive integer is Legendre's incom-
plete iritegral of the third kind agd 3/5 A1 or y; A k*ii% .
For the special Caseé where Z'; =1 or 3'; = g*z, the reader
may réfer to (BF111.06) for appropriate formulas. It can be
evaluated by using Formuias (BF430) through {BFLLO).

If, next, we square (2.6), we have that

2 2 2 X,
co = ﬁ;_{l"W; sn” u§® (2.23)
H A§ 1--7d sn21f/
S0
where
2
- Ap | = A (2.2L)

Repeating the procedure used to obtain I we find that

11’
(use BF340.02)

t
2 %‘ AZ T
I..= ¢, dt= - 1 1 ) u, +
ty 3 14

(2.25)
2 2 2 * 2 2
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, 2 2, @ ¥ 2 2
+ Wh- -}(3) [ve(ui, M) - va(o,yh)]j (2.25)

where
* 2 Xk 2
Vl( ui’ )/Ll,) = II(ui, Y“_) s (a)
¥ o : , 2 X % 2 2, %
Vg(ui’y)_‘-);"h —rs 1 XuE(ui )+ (k -)/ h)ui
20y ) |

2 ,xg,' 2 x2 . X 2
(2y. k 2 -y 0 = 3K ) II(ugsy,) (2.26)
ey RS2y ey - oy,
x o P!
Y ﬂ sn uy cn u;édﬁ u;* . (b)
1-7(: snzu;x

If we take the unperturbed solution (ﬁbH)o as our initial

value of 95H » the initial value of x3 will be zero and we can

write
xy= Pgm (Pa) o= (0T ~(m"" = 3%, 0T, - x10e
(2.27)

The remaining three integrals of (L.2l}) follow easily. They
are explicitly

x, =86' - (8') =0 (2.28)

Xy = Pl - (1) =- X' (£-31,,) (2.29)
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L= - =0- ' 200)
X =h (h)o _ - (2.3
while the unperturbed solutions are taken as initial values.

of the relevant variables.

Summarizing, we have the secular, first-order'solution

for Case (1):

2
¢y =~ _1(c'h c ~-a' ¢, + C) (a)
Yy 5 2ot O pr o hn '’
Oy
A+ Asn
%
¢ =TSR Uy, 0<ul<K (b)

it A3+ Ausn2 u{‘
(2.31)

= (Pt (s ~(x - 3L x (o)

o! =(e')o s 4 : (a)

(Pt - x1(8-3T5) (e)

-
0

where uf‘ is given by whichever of (2.9),(2.11),(2.13) or

(2.15) applies to the appropriate subcasz.

Case(ii): Four real roots with identical roots
This case can be treated as & special case of (i) and can

be further grouped into two subcases.
P



i

(i? a= &, # ceH or a5= au P ceH: It is seen from (2.8) that
k" = 0. Thus all the elliptic functions reduce to trigonometric

functions (i.e., sn u*»= sin u* setcs). In either case, equa-
tion (2.6) becomes |

‘ K
Cy = A1+A2 Sincuy s 0 < u;(.f_ /2 , (2.32)

H 3 +A simeg® B
3k 1

where the Ay, 1i=1,2,3,l, are given by either (2.12) or (2.1l)

if al = az. They are given by either (2.7) or (2,10) if a3§'au.

Then u] is given by (2.13) or (2.15) if a;= a, and it is given

by (2.9) or (2.11) if ay =8 .

We note that if we replace (2.31(b)) by (2.32) and if,

2

for this case (k*'= 0), we can evaluate I11 and I21 which
correspond to (2.21)‘and (2.25) . Then equations (2.31) will
give us the first-order secular solutions. It is also seén
from equations (2.21) ,(2.22), (2.25) and (2.26) that if we
evaluate both II(u}} y;), j=1,2,3,} and F(u¥) at k* = 0 then
these equations will determine béth Ili and 121. Formulas
for.the elliptic integrals II(ui?hki) and F(uf) can be fouﬁd
in [1]. Explicitly, they are [see (BF111.01) and (BF121.01)].

A - X

. x P '
Ii(u’i‘-, ﬁ): u;, if 3(; =0 (2.33)
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) tan~1(1- X?) /2, on ) ) i opten,
2 1/2 J
(1 -xj)
(2.33)
1 /2 tan u*

tan [(3’; -1)

1) , if ?,2 > 1,
2 172 J
(‘Xj -1)

2 ,
If ‘{j = 1, we can use (BF111,01); (BF121.01) and (BF111.06),

and write

II(u),1) = tan u; . (2.3l

Thus, the integrals Ili and I2i are determined and equations
(a),(b),(g),(d):(e) and (f) of (2.31), together with (2.32),
give the first-order secular solutions for the six variables

of interest.

3¢

(2) a, = a It follows from (2.8) that k" = 1. Thus all

3:
elliptic functions reduce to hyperbolic functions (i.e.,

: * X
sn u® = tan h u, cn ﬁ*= sec h u.). Equation (2.6) takes the form

X
2
c - A1-+A2tan h uy ,

o
H a4

374

< o (2.35)

2
tan h u;”

where the Ai’ i=1,2,3,l4» are given by either (2.7) (2.10),
(2.12) or (2.14) and u;éis given by the associated relatioﬁ'
(2.9)s (2411), (2.13) or (2.15).



16

The analysis proceeds as in the preceding subcase, and

we have, from (BF111.0)), that if ¥ =1

F(ii‘?_’) = In(ten 'cfi - séc¢i), sbi = am uix (a)

(2.36)
II(u’f,. 7(;) = 1 . [,Y_n(tan¢i + sec‘?i)
1-%
J (b)
1 +Y, 8, \1/2
-Yﬁin( 3 ¢1> 1 (Xjﬁtn.

1 =Yy S¢i

.[Here W’; cannot take on the value one since.II(uf;l) =o0].

Thus the integrals I and I_., can be determined by (2.21),

11 2i
(2.22) and (2.25),(2.26), respectively, and therefore equa-
tions (a),(b),(c),(d),(e),(f) coupled with (2.35), give the

first-order secular solutions.

Case (111): Two distinct real roots and a palr of complex roots
Let ays8, be the real roots and let a3,and its complex
X > a_.

3 1 2
We can write equation (2.3) in the Jacobian normal form for -

conjugate a’ be the complex roots and assume that a

complex roots [see (BF250,05) and (BF250.06) ]

de o
gfan”= ' On - (92 Q g,
72+ 0°

) 1
[(al‘ceH (Ce -a2)(ce -a3)(0e -a3 )]
( 2 -37)
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>
where g 1s given by the equation

gt= 1 , (23.8)
1/2
(A B')
and
¥, ¢ 2
A' = [(ay- b )% & & ]]'/2 s (a)
B' = [(a,- BY" 4 4 “ve (b)
(2.39)
%2
8 =-1 (a_. - &) 2, (c)
L 3 3
*r
S 1 (a + &) . _ (a)
2 3 3 |
The variable ¢  1is now related to ﬁ* through the equa-
tion
' *
A A cnu

o 1
) X
H A3+ Aucn u

where Kﬁxhas the same definition as in Case (i) and k* is the
new modulus of Jacobian elliptic functions and inﬁegrals.

Since the time rate of change of ¢ is real, the value of

%)
H
ceHAmust lie between 8y and 85 Ir 8y > ceH > aZ s We have »
- _— | 3 1
Ay = a;B' + aA' (a)
A, = a A' - a,B' ()
22 1 (2.41)
3 ‘
A3_-.A'+B' ’ (e)
Au = A' - B! s . (d)
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and k¥*2 has the value

*e o (aymap)® - (ar-Bn® (2.42)

LI.A'B'

If we integrate (2.37) with respect to time t from t2 to t,

we obtain [see (BF259.00) ]

A $1/2 o O (e
u = - é'—sz- (K ). sgat (t-tp) (2.43)
where t2 is the value of t at which Cg = aé. Sgbstituting-
H

(2.43) into equation (2.40) we obtain the first-order secular
solution . forch. With the time‘dependence of ceH known,
equation (2.1) gives the filrst-order secular solution for n/H.
| Proceeding as in Case (1), and usihg equations (2.40)

and (2.43) in conjunction with equation (2.19), we find that,

to first-order,

c %
VH dt = - g X D144 Iy enu
seH (A*)l/zseo*n“ h(A3‘A1) 1 +¥ien u*
1 X
+ Dot toyjen ut, D, au” . (2.44)

x
h(A3+A1) 1+'yécn u
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where
A - A
Yl = _LL___E 2 (a)
A - A
3 1
Yo = Ay + Ry, (b) (2.45)
A+ A
3 1
Y3 = % . (e)

To integrate equation (2.4[;) with respect to time t, we can

use (BF361.62) and- rearrange it in the form

c
VH dat = - 2 1Ay ( Y3, 1- 7(3/Y1)

S »® 1/2 2 - 3¢
8y (A7) seo._Q. h(A3 Al) 71 1- Yyen u

+ Dby ¥y, 1- rj,/Tz )+ D3] au”, (2.4ly)
h(A3+A1)\ Y2 1 +¥ ,en u* .

If 'X: £ 1, and X;# 1, we find, from (BF361.5l) [or from
(BF341.03) ], that |

&
[¢]
I.. = YH at
11 T

ty °H

- 7S x ( D1A33§+ Do A3 V3 + DB) u.i*+
(a%) 1/2se°.f)_ nlhy-A))y, B(Ag+hy) 5,
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D, A - ¥ %
+__."173 1 3[R (usy.) ~R (0,)4)

+ .D A3 \(2 _X3 [Rl(u*; D’Z) - Rl( 0, XZ{}{ .v. (2.)_[,6)

2
h( A3+AlT Y

where .
2
Rl(u*,j i) = 1 II(LI*: Y 1 ) - )/i fl(u*,’bfz) ) (8.)
1-¥2 Y- 1 1
i i
) 1- y2  \We KB X2, 211/2
fl(u%; 3/2) =( . )/i 2 tan™t (k KTy i—) / sda u¥/ ,
S VR 1-7 %
10 V5 o< X2
—t
Wi-l
. .
= 8d u¥’, ir Xi = k 2 ; (b) (2-“.7)
751 |
: 1/2 X
R TR Rb T [ st & U
%2  %f2,2
kX 4 2y , 1/2
. (k%% % 2?{]2_) dn u -
1/2 | )
(Y;-1  enw™| g v L2
1/2 2

( b':-l) sn u ¥,
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If éither )’; =1 or X ; = 1, the integral_in (2;&6) is to be
replaced with the integral givén by either (BF361.51) or
(BF341:i53) .

Equatioh (2;&0) can be used to write

t
121 = Jﬁ c Hdt
ts
_* .
u 2
(&%) Seaﬂ Ay 5 | Ty Y, 1+ xucn w*
. \@ v |
+( Xu’ﬁ;\\ 1 S| e (2.48)
71+ (1- Yh cn u )
where
WM-:_'A__LL 3 (a)
A
2
Y. =42 . (b)
5 Ay

Integrating with respect to time, we find from (BF3h1.03) and

(BF341.04) that

2 2 .
,=-__g" M -Wsuﬁzzfswu‘ £ Rl(u*,xz -
(w92 & A§ T{ﬁ j(u(l- Xi)
60
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. _ 2 : .
- R, (0, Xa) + T)_L'“ Yg\a 7{“(21{ 2-1)-2k 2 | g (u*,yd) -
1 L 2 > . 1 L
o ey m

L

*

Ri(0, Y9 |+ 2% [ _(u™ )‘ R (05 y,) YLZL an o an u
- 1 ,YLI. + -1 u Xh, - _1( ’ XL'. + ? "
_ - Xucn u™

¥ e | X |
- k [R_z(u 5 YLI.) - R—Z( O, Yh)] (2-;0)
whére ‘
R_ (u;i Y ) = u*+ RN cos'l(dn u-x) ’ (a)
1 N % .
-  *2 2xt2 ¥ 2 x
R_o(u’ ) .= 1 kW - k ) E(u') b)
2(u™ ¥, FEF y ey B
+ 2 h—t 'k*cos'l(dn u*)] s
_ . ¢]‘
and
Ty

Iif X Z = 1, the integrals in (2.48) are to be replaced
with the integrals given by (BF341.53) and (BF34l.5l4). Thus
equations (a),(b),(c),(d),(e)s(f) of (2.31) together with (2;)40),
(2.46) and (2.50) give the associated first-order secular

solutions for the six variables.
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Case (iv): Two identical real roots and a pair of complex roots
This ia a special case of Case (iii). It can be shown in

a straightforward manner from (2.40) that if 8, = a, then

ce = al and GH is a constant of the motion. Consequently
H
EVH’ ere' and h are all constants of the motion and gSH and

¢,' are linear functions of time.
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